Iterative learning-based minimum tracking error entropy controller for robotic manipulators with random communication time delays
نویسندگان
چکیده
A novel feedback control method for robotic manipulators with random communication delays by combining the optimal P-type iterative learning control (ILC) idea with a minimum tracking error entropy control strategy is presented. The control design is formulated as an optimisation problem with a proper performance index and a constraint. In specific, the performance index implies the idea of the minimum entropy control of the closed-loop tracking error. The convergence in the mean-square sense has been analysed for all the signals in the closed-loop system. The convergence condition of such a tracking error under ILC framework is treated as the constraint condition which is satisfied in the optimisation process. It has been shown that the numerical optimal solution per iteration can be obtained by using the well-known particle swarm optimisation techniques. Simulation results are provided to show the effectiveness of the proposed approach.
منابع مشابه
Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملBilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملNear-Minimum-Time Motion Planning of Manipulators along Specified Path
The large amount of computation necessary for obtaining time optimal solution for moving a manipulator on specified path has made it impossible to introduce an on line time optimal control algorithm. Most of this computational burden is due to calculation of switching points. In this paper a learning algorithm is proposed for finding the switching points. The method, which can be used for both ...
متن کامل